Abstract

Selenium is a trace element that exerts certain insulin-like actions in vitro. In this study, we evaluated its in vivo effects on the glucose homeostasis of rats made diabetic and insulin-deficient by streptozotocin. Na2SeO4 was administered ad libitum in drinking water and/or food for 10 weeks. The elevated plasma glucose levels (approximately 25 mmol/l) and glucosuria (approximately 85 mmol/day) of untreated rats were decreased by 50 and 80%, respectively, by selenate treatment. The beneficial effect of selenate was also evident during oral and intravenous glucose tolerance tests: the integrated glucose responses were decreased by 40-50% as compared to those in untreated rats. These effects were not due to an increase in plasma insulin levels. Compared to non-diabetic rats, pancreatic insulin reserves were reduced by more than 90% in treated and untreated diabetic rats. The hepatic activities and mRNA levels of two key glycolytic enzymes, glucokinase and L-type pyruvate kinase were blunted in diabetic rats. They increased approximately two- to threefold after selenate treatment, to reach 40-75% of the values in non-diabetic rats. In contrast, elevated activity and mRNA levels of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, were reduced by 40-65% after selenate administration. Since selenate induced a moderate decrease in body weight due to an anorexigenic effect, we checked that there was no improvement of glucose homeostasis or hepatic glucose metabolism in an additional group of calorie-restricted diabetic rats, which was weight-matched with the selenate group. In addition, no obvious toxic side-effects on the kidney or liver were observed in the rats receiving selenate. In conclusion, selenate induces a sustained improvement of glucose homeostasis in streptozotocin-diabetic rats by an insulin-like action, which involves partial correction of altered pretranslational regulatory mechanisms in liver metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.