Abstract
Food-material poses a challenging matrix for objective material scientific description that matches the consumers' perception. With eyes on the emerging structured food materials from alternative protein sources, objectively describing perceived texture characteristics became a topic of interest to the food industry. This work made use of the well-known methodologies of jaw tracking and electromyography from the field of "food oral processing" and compared outcomes with mechanical responses to the deformation of model food systems to meat alternatives. To enable transferability to meat alternative products, an anisotropic structuring ingredient for alternative products, high-moisture texturized vegetable protein (HM-TVP), was embedded in an isotropic hydrocolloid gel. Data of the jaw movement and muscle activities exerted during mastication were modeled in a linear mixed model and set in relation to characteristic values obtained from small- and large-strain deformation. For improvement of the model fit, this work makes use of two new data-processing strategies in the field of oral processing: (i) Muscle activity data were set in relation to true forces and (ii) measured data were standardized and subjected to dimensional reduction. Based on that, model terms showed decreased p-values on various oral processing features. As a key outcome, it could be shown that an anisotropic structured phase induces more lateral jaw movement than isotropic samples, as was shown in meat model systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.