Abstract

Recombinant Bacillus subtilis spores were employed as a vaccine delivery system in a heterologous mucosal priming-parenteral boosting vaccination strategy in the mouse model. BALB/c and C57BL/6 mice were orally immunised with recombinant spores expressing tetanus toxin fragment C (TTFC) fused to the spore outer coat protein CotB, and then subcutaneously boosted with soluble TTFC (without adjuvant). Two weeks after boosting, a significantly higher serum TTFC-specific IgG response was stimulated in mice primed with recombinant spores (antibody concentration of 2600 ± 915 in C57BL/6 and 1200 ± 370 ng/ml in BALB/c) compared to mice inoculated with wild type spores (650 ± 250 and 250 ± 130 ng/ml, respectively). IgG subclass analysis showed a prevalence of IgG1 and IgG2b, indicative of a Th2 type of immune response. Oral administration of recombinant spores stimulated also a significant local TTFC-specific IgA response. These data show that recombinant spores of B. subtilis are able to prime the immune system by the oral route, and that a combined mucosal/parenteral strategy can stimulate both local and systemic antigen-specific immune responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.