Abstract

Ionizing radiation-induced injury commonly happens in radiotherapy, leading to damages of the hematopoietic and gastrointestinal systems. Radioprotective medications are mainly applied in hospitals, although only injections are available and their gut protection is limited. Here, oral konjac glucomannan (KGM), a natural macromolecule and soluble dietary fiber, was used against ionizing radiation-induced injury. The mice were fed with KGM (0.4 g/kg) for 3 days or injected with a clinical medication amifostine before 6.5 Gy γ-ray whole body irradiation (WBI) or 13 Gy whole abdominal irradiation (WAI). In the WBI experiments, KGM improved blood cell recovery and bone marrow cell proliferation in the femur and spleen, though its effect was weaker than or similar to that of amifostine. In the WBI experiments, the gut protection of KGM was similar to or a little better than that of amifostine, involving regenerated crypts numbers, villus length, and gut permeability. Moreover, KGM remarkably enhanced the survival rates of WBI and WAI mice, consistent with amifostine. KGM, as a prebiotic, enhanced gut microbiota abundance, probiotic numbers, and short chain fatty acid production, maintaining gut homeostasis. Moreover, KGM inhibited the apoptosis of irradiated human intestinal epithelial cells. KGM is a promising natural macromolecule against ionizing radiation-induced injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.