Abstract

BackgroundTrichinella spiralis is an important foodborne parasite that presents a severe threat to food safety. The development of an anti-Trichinella vaccine is an important step towards controlling Trichinella infection in food animals and thus ensure meat safety. Trichinella spiralis galectin (Tsgal) is a novel protein that has been identified on the surface of this nematode. Recombinant Tsgal (rTsgal) was found to participate in larval invasion of intestinal epithelium cells (IECs), whereas anti-rTsgal antibodies impeded the invasion.MethodsThe rTsgal/pSIP409- pgsA′ plasmid was constructed and transferred into Lactobacillus plantarum strain NC8, following which the in vitro biological properties of rTsgal/NC8 were determined. Five groups of mice were orally immunized three times, with a 2-week interval between immunizations, with recombinant NC8-Tsgal, recombinant NC8-Tsgal + α-lactose, empty NC8, α-lactose only or phosphate-buffered saline (PBS), respectively. The vaccinated mice were infected orally with T. spiralis larvae 2 weeks following the last vaccination. Systemic and intestinal local mucosal immune responses and protection were also assessed, as were pathological changes in murine intestine and skeletal muscle.ResultsrTsgal was expressed on the surface of NC8-Tsgal. Oral immunization of mice with rTsgal vaccine induced specific forms of serum immunoglobulin G (IgG), namely IgG1/IgG2a, as well as IgA and gut mucosal secretion IgA (sIgA). The levels of interferon gamma and interleukin-4 secreted by cells of the spleen, mesenteric lymph nodes, Peyer's patches and intestinal lamina propria were significantly elevated at 2–6 weeks after immunization, and continued to rise following challenge. Immunization of mice with the oral rTsgal vaccine produced a significant immune protection against T. spiralis challenge, as demonstrated by a 57.28% reduction in the intestinal adult worm burden and a 53.30% reduction in muscle larval burden, compared to the PBS control group. Immunization with oral rTsgal vaccine also ameliorated intestinal inflammation, as demonstrated by a distinct reduction in the number of gut epithelial goblet cells and mucin 2 expression level in T. spiralis-infected mice. Oral administration of lactose alone also reduced adult worm and larval burdens and relieved partially inflammation of intestine and muscles.ConclusionsImmunization with oral rTsgal vaccine triggered an obvious gut local mucosal sIgA response and specific systemic Th1/Th2 immune response, as well as an evident protective immunity against T. spiralis challenge. Oral rTsgal vaccine provided a prospective approach for control of T. spiralis infection.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call