Abstract

Fixed-dose combination (FDC) products containing at least two different active pharmaceutical ingredients are designed to treat more effectively different pathologies as they have demonstrated to enhance patient compliance. However, the combination of multiple drugs within the same dosage form can bring many physicochemical and pharmacodynamic interactions. The manufacturing process of FDC products can be challenging, especially when it is required to achieve different drug release profiles within the same dosage form to overcome physicochemical drug interactions. Monolithic, multiple-layer, and multiparticulate systems are the most common type of FDCs. Currently, the main manufacturing techniques utilized in industrial pharmaceutical companies rely on the use of combined wet and dry granulation, hot-melt extrusion coupled with spray coating, and compression of bilayered tablets. Nowadays, personalized medicines are gaining importance in clinical settings and 3D printing is taking a highlighted role in the manufacturing of complex and personalized 3D solid dosage forms that could not be manufactured using conventional techniques. In this review, it will be discussed in detail current marketed FDC products and their application in several diseases with an especial focus on antimicrobial drugs. Current industrial conventional techniques will be compared with 3D printing manufacturing of FDCs. Graphical Abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.