Abstract

Curcumin has antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic activities. However, the clinical application of curcumin has been restricted by the poor water solubility and low bioavailability of this molecule. In this work, hydrophobic porous silicon (pSi) particles were prepared by electrochemical etching method and grafted with the different hydrophobic groups on their surfaces. The loading efficiency of curcumin in pSi has been investigated. The properties of pSi particles have been characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FTIR). The highest loading efficiency of curcumin can be obtained with pSi surface modified with the octadecyl silane group. The release properties of curcumin in hydrophobic pSi have been researched in vitro and in vivo. The curcumin in the hydrophobic pSi surface keeps a high antioxidant bioactivity. The toxicological evaluation of the hydrophobic pSi particles indicates they have a high in vivo biocompatibility within the observed dose ranges. The hydrophobic pSi particles could provide an effective and controlled release delivery carrier for curcumin, which may provide a new tool platform for the further development of curcumin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.