Abstract

The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of diclofenac sodium (DFS) using different proportions of ethyl cellulose (EC) as the retardant material to extend the release. The formulated microcapsules were then compressed into tablets to obtain controlled release oral formulations. Phase separation-coacervation technique was employed to prepare microcapsules of DFS using different proportions of EC in cyclohexane. Physical characteristics of microcapsules and their tablets, in vitro release pattern of the designed microcapsules and their tablets prepared from them were studied using USP dissolution apparatus (USP 2000) type 2 (paddle method) in triple distilled water. The prepared microcapsules were white, free flowing and spherical in shape, with the particle size varying from 49.94-52.72 #119 m. The duration of DFS release from microcapsules was found to be directly proportional to the proportion of EC and, thus, coat thickness. All tablets were of good quality with respect to appearance, drug content uniformity, hardness, weight variation, friability and thickness uniformity. In vitro release study of the tabletted microcapsules in triple distilled water showed a zero order release kinetics and extended release beyond 24 h. A good correlation was obtained between drug release (t 60) and proportion of EC in the microcapsules. In the case of tabletted microcapsules, very good correlation could be established between t 60, proportion of EC, weight of the tablets and between release rate constant (K) and proportion of EC. All the formulations were highly stable and possessed reproducible release kinetics across the batches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.