Abstract

ObjectivesThis study aimed to analyze interactions between oral biofilms and a dental triethylene glycol dimethacrylate (TEGDMA)-based resin infiltration material on enamel. MethodsDemineralized enamel specimens (14days, acidic buffer, pH 5.0) were either infiltrated with a commercial TEGDMA resin and subjected to a three-species biofilm (Streptococcus mutans UAB 159, Streptococcus oralis OMZ 607 and Actinomyces oris OMZ 745) (group 1), applied to the biofilm (group 2), or merely resin infiltrated (group 3). A control group received no treatment (4). Biofilm formation and metabolic activity of biofilms were measured for group (1) and (2) after 24h CFU and a resazurin assay. Resin biodegradation was measured for group (1) and (3) by high performance liquid chromatography (HPLC) coupled with mass spectrometry after 6 and 24h incubation. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) images were taken to study the biofilm and material’s autofluorescence in groups (1–4) after 24h. ResultsSEM and CLSM images showed reduced biofilm formation on resin-infiltrated specimens (group 1) compared to group 2, while no biofilm was detectable on groups 3 and 4. CFU data (log10 CFU per mL) of group 1 showed significantly reduced bacterial numbers (p<0.05) compared to group 2. However, HPLC analysis of TEGDMA leakage after 6h and 24h revealed no differences between group 1 and group 3. ConclusionsThe results of the current study indicate that freshly resin-infiltrated enamel surfaces show a biofilm reducing effect, while monomer leakage was not affected by bacterial presence. Clinical significanceResin infiltrated enamel surfaces are constantly exposed to the oral microflora. Yet, it is not known how biofilms interact with enamel-penetrated resins and if and to which extent accessory alignments in oral hygiene are needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call