Abstract
Necrotizing enterocolitis (NEC) frequently results in significant morbidity and mortality in premature infants. Others reported that mice deficient in pulmonary surfactant protein-A (SP-A) born and raised in a nonhygienic environment succumb to significant gastrointestinal tract pathology, and enteral administration of purified SP-A significantly reduced mortality. We hypothesized that oral administration of purified SP-A can ameliorate pathology in an experimental model of neonatal NEC. Experimental NEC was induced in newborn Sprague-Dawley rat pups by daily formula gavage and intermittent exposure to hypoxia. Purified human SP-A (5 μg/day) was administered by oral gavage. After 4 days, surviving pups were sacrificed, and intestinal pathology was assessed by histological examination of distal terminal ileal sections. Intestinal levels of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α) were assessed by enzyme-linked immunosorbent assay and levels of Toll-like receptor 4 (TLR4) by Western analysis. Sixty-one percent of the gavaged rat pups that survived to day 4 met the criteria for experimental NEC after hypoxia, whereas treatment with SP-A significantly reduced mortality and assessment of NEC. Intestinal levels of proinflammatory cytokines were significantly increased in pups exposed to hypoxia. Administration of SP-A to pups exposed to hypoxia significantly reduced IL-1β and TNF-α levels, but had little effect on elevated levels of IFN-γ. SP-A treatment of hypoxia-exposed pups significantly reduced expression of intestinal TLR4, key in NEC pathogenesis. In a rat model of experimental neonatal NEC, oral administration of SP-A reduces intestinal levels of proinflammatory cytokines and TLR4 protein and ameliorates adverse outcomes associated with gastrointestinal pathologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pediatric Gastroenterology and Nutrition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.