Abstract

Osteoarthritis (OA), a common degenerative disease affecting articular cartilage, is caused by multiple factors, and currently, there are few approaches to effectively delay its progression. This study aimed to evaluate whether a strontium compound (in the form of strontium gluconate, Glu-Sr) could reduce OA pathology severity in osteoarthritic rat models by directly targeting chondrocytes, including catabolic/anabolic activities and/or chondrogenic differentiation. Glu-Sr was administered to OA rats by oral gavage beginning during OA induction and continuing for 8weeks. Glu-Sr treatment was found to significantly reduce cartilage degeneration and delay OA progression. Further examination showed that collagen II, Sox9, and aggrecan (ACAN) genes were up-regulated whereas IL-1β was down-regulated in chondrocytes isolated from Glu-Sr-treated rats. Glu-Sr also antagonized the catabolic effects of IL-1β on chondrocytes. Furthermore, Glu-Sr was shown to promote the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), possibly through promoting chondrogenic gene expression, including CTGF and FGF1, as revealed by RNA-sequencing (RNA-seq). These results suggest that systemic administration of Glu-Sr may be useful in prophylactic and therapeutic treatment of chronic cartilage degradation through affecting multiple steps from chondrogenic differentiation of progenitors to matrix formation in mature chondrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.