Abstract

White spot syndrome virus (WSSV) is the major pathogen that leads to severe mortalities in cultured shrimp worldwide. The envelope proteins VP28 and VP24 of WSSV are considered potential vaccine candidate antigens. In this study, we utilized a Saccharomyces cerevisiae (S. cerevisiae) surface display system to demonstrate the feasibility of this platform for developing a vaccine candidate against WSSV. EBY100/pYD1-VP28-VP24 was generated, and the fusion protein VP28-VP24 was present on the surface of S. cerevisiae. Penaeus vannamei (P. vannamei) was used as an animal model. Oral administration of EBY100/pYD1-VP28-VP24 could induce significant activities of immune-related enzymes such as superoxide dismutase (SOD) and phenoloxidase (PO). Importantly, WSSV challenge indicated that oral administration of EBY100/pYD1-VP28-VP24 could confer 100% protection with a corresponding decrease in the viral load. The collective results strongly highlight the potential of a S. cerevisiae-based oral vaccine as an efficient control strategy for combating WSSV infection in shrimp aquaculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call