Abstract

PurposeThe incidence and prevalence of food allergy have sharply risen over the past several decades. Oral administration of probiotic stains has been proven as a safe and effective method to control food allergy. In this study, it aims to comprehensively investigate the anti-allergic effect of Lactobacillus plantarum JC7.MethodsBalb/c mice were randomly divided into three groups and received OVA (20 µg/mouse, intraperitoneal injection), L. plantarum JC7 (2 × 108 CFU/mouse, intragastric administration) + OVA (20 µg/mouse, intraperitoneal injection) or 0.9% saline (intragastric administration) for 3 weeks. Body weight was monitored weekly, and allergic reactions were evaluated after challenge of OVA. Serum levels of OVA-specific immunoglobulins and various cytokines were tested using ELISA, and the cecum microbiota was analysed by 16S rRNA sequencing to explore the relationships between these indicators and OVA-induced food allergy. Western blotting was used to identify the expression levels of phosphorylated IκBα and nuclear factor kappa B p65.ResultsOVA-sensitised mice showed mitigation of respiratory manifestations, alleviation of lung inflammation and congestion, and the presence of an intact intestinal villus structure. Furthermore, OVA-specific immunoglobulin E (IgE), OVA-specific-IgG1, and plasma histamine levels were declined in mice treated with L. plantarum JC7 than in OVA-sensitised mice. In addition, interferon-γ (IFN-γ) and interleukin 10 (IL-10) levels were significantly increased, while IL-4 and IL-17A levels were clearly decreased in mice that had undergone oral administration of L. plantarum JC7, compared with OVA-sensitised mice. These findings indicated imbalances of T helper cell type 1 (Th1)/Th2 and regulatory T cells (Treg)/Th17, which were confirmed by quantitative polymerase chain reaction (PCR). Western blotting demonstrated that the expression levels of phosphorylated IκBα and nuclear factor kappa B p65 were significantly increased in OVA-sensitised mice, but these changes were partly reversed after treatment with L. plantarum JC7. Oral administration of L. plantarum JC7 increased the richness, diversity, and evenness of cecum microbiota, characterised by higher Bacteroidetes abundance and lower Firmicutes abundance. Additionally, the intestinal microbial community composition was significantly altered in the OVA-sensitised group, indicating a disordered intestinal microbiota that was restored by the oral administration of L. plantarum JC7.ConclusionOverall, L. plantarum JC7 can prevent food allergy by rectifying Th1/Th2 and Treg/Th17 imbalances, combined with modifications of disordered intestinal microbiota.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call