Abstract

The incidence of symptomatic radiation induced lung pneumonitis (RILP), a major dose limiting side effect of thoracic radiotherapy, is in the range of 15-40%. Therapeutic options for the prevention and treatment of RILP are limited. Hence there is a need for developing novel radioprotectors to prevent RILP which can be patient compliant. This study sought to evaluate the efficacy of oral 3,3′-diselenodipropionic acid (DSePA), a novel selenocystine derivative to prevent RILP. C3H/HeJ (pneumonitis responding) mice received a single dose of 18 Gy, whole thorax irradiation and a subset were treated with DSePA orally (2.5 mg/kg), three times per week beginning 2 h post irradiation and continued till 6 months. DSePA delayed onset of grade ≥ 2 RILP by 45 days compared to radiation control (~105 versus ~60 days). It also reversed the severity of pneumonitis in 3/10 radiation treated mice leading to significant improvement in asymptomatic survival compared to radiation control (~180 versus ~102 days). DSePA significantly (p < 0.05) reduced the radiation-mediated infiltration of polymorphonuclear neutrophils (PMN) and elevation in levels of cytokines such as IL1-β, ICAM-1, E-selectin, IL-17 and TGF-β in the bronchoalveolar lavage fluid. Moreover DSePA lowered PMN-induced oxidants, maintained glutathione peroxidase activity and suppressed NF-kB/IL-17/G-CSF/neutrophil axis in the lung of irradiated mice. Additionally, this compound did not protect A549 (lung cancer) derived xenograft tumor from radiation exposure in SCID mice. DSePA offers protection to normal lung against RILP without affecting radiation sensitivity of tumors. It has the potential to be developed as an oral agent for preventing RILP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call