Abstract

T cells play a pivotal role in the initiation and progression of multiple sclerosis. We have found that 1,4-aryl-2-mercaptoimidazole (KRM-III) inhibited T-cell antigen receptor- and phorbol myristate acetate/ionomycin-induced activation of nuclear factor of activated T cells (NFAT) and T-cell proliferation with an IC(50) of 5 microM. The KRM-III-mediated inhibitory effect was specific for NFAT activation but not for nuclear factor kappaB. Oral administration of 90 mg/kg KRM-III resulted in complete abrogation of anti-CD3 antibody-induced T-cell activation and a 45.8% reduction in footpad swelling in bovine serum albumin-induced delayed-type hypersensitivity. In the murine experimental autoimmune encephalomyelitis (EAE) model, oral administration of KRM-III significantly attenuated the severity of disease when given before or after disease onset. Draining lymph node cells from KRM-III-treated mice showed markedly reduced proliferation in response to myelin oligodendrocyte glycoprotein peptide. Histological analysis indicated that KRM-III reduced the infiltration of inflammatory cells to the white matter of spinal lumbar cords. These results demonstrate that KRM-III efficiently inhibits T-cell activation and inflammatory responses and lessens EAE clinical signs, which suggest KRM-III as a potential lead compound for the treatment of T-cell-driven autoimmune diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call