Abstract
PurposeAlthough post-irradiation hyposalivation significantly impairs patient quality of life, the underlying mechanisms driving radiation-induced salivary gland fibrosis and hyposalivation remain poorly understood. This study aims to explore the role of calcium-mediated signaling pathways in radiation-induced salivary gland fibrosis. Materials and MethodsPrimary human submandibular gland (SG) cells and C57BL/6J female mouse SGs were exposed to irradiation to model fibrosis development. Following 15 Gy irradiation exposure, RNA sequencing and bioinformatic analysis were conducted on mouse SGs. The effects of Store-Operated Calcium Entry (SOCE) inhibition using SKF96365 and YM58483 on fibrosis markers were assessed in vitro and in vivo. Additionally, the involvement of ORAI2 protein and the newly identified JNK/NFAT1/TGF-β1 signaling axis in SG fibrosis was explored. ResultsWe identified that the calcium release-activated calcium modulator ORAI2 was important in promoting early-stage post-irradiation fibrosis in SGs. Calcium channel signaling was activated in both human patients and irradiated C57BL/6J female mice SGs. Inhibition of SOCE signaling effectively blocked fibrosis in an ORAI2-dependent manner 30 days after irradiation. Our mechanistic studies revealed a novel ORAI2/JNK/NFAT1 axis within the SOCE pathway critical in driving TGF-β1-mediated fibrogenesis. Encouragingly, pharmacological inhibition of NFAT1 significantly mitigated radiation-induced SG fibrosis and restored saliva flow to 84.61% of normal levels in treated mice 30 days after irradiation, without detectable side effects. ConclusionsOur findings highlight the significance of the ORAI2-mediated calcium signaling pathway, specifically via the ORAI2/JNK/NFAT1 axis, in promoting TGF-β1 expression and contributing to the development of early-stage salivary gland fibrosis following irradiation exposure. Targeting the ORAI2/JNK/NFAT1 axis emerges as a promising therapeutic strategy to alleviate radiation-induced hyposalivation and fibrosis, potentially improving the quality of life for patients undergoing radiotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology, Biology, Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.