Abstract

Stromal interaction molecule 1 (STIM1)-dependent store operated calcium-entry (SOCE) through Orai1-mediated calcium (Ca(2+) ) influx is considered a major pathway of Ca(2+) signaling, serving T-cell, mast cell, and platelet responses. Here, we show that Orai1 is critical for neutrophil function. Orai1-deficient neutrophils present defects in fMLP and complement C5a-induced Ca(2+) influx and migration, although they respond normally to another chemoattractant, CXCL2. Up until now, no specific contribution of Orai1 independent from STIM1 or SOCE has been recognized in immune cells. Here, we observe that Orai1-deficient neutrophils exhibit normal STIM1-dependent SOCE and STIM1-deficient neutrophils respond to fMLP and C5a efficiently. Despite substantial cytokine production, Orai1(-/-) chimeric mice show impaired neutrophil recruitment in LPS-induced peritonitis. Moreover, Orai1 deficiency results in profoundly defective C5a-triggered neutrophil lung recruitment in hypersensitivity pneumonitis. Comparative evaluation of inflammation in Stim1(-/-) chimeras reveals a distinct pathogenic contribution of STIM1, including its involvement in IgG-induced C5a production. Our data establish Orai1 as key signal mediator of C5aR activation, contributing to inflammation by a STIM1-independent pathway of Ca(2+) -influx in neutrophils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call