Abstract

Despite remarkable progress in understanding and treating oral cancer (OC), it still remains one of the life-threatening diseases and predominant cancers in the world. Therefore, deciphering the molecular mechanisms of this disease would help us to develop highly efficacious therapies. Multiple lines of evidence suggest that calcium and its dysregulation play significant role in the development of various cancers. As an adaptation of survival mechanism, upon depletion of ER calcium stores, store-operated calcium entry (SOCE) has been induced via SOCE channels (SOCC) in various mammalian cells. SOCC are regulated by Orai-1, Orai-2 and Orai-3 located on plasma membrane and two calcium-sensing ER membrane proteins known as stromal interaction molecules (STIM-1 and STIM-2). Hence, the present study was aimed at analysing the role of Orai-1 and Orai-2 in oral cancer and the underlying mechanism. Our results suggest that both Orai-1 and Orai-2 proteins were overexpressed in oral cancer tissues and cell lines (SAS) compared to normal epithelial tissues and cell lines respectively. In addition, silencing of Orai-1 and Orai-2 via chemical SOCE inhibitors and siRNAs inhibited calcium uptake and suppressed oral cancer cell proliferation, colony formation and migration. Furthermore, silencing of Orai-1 and Orai-2 inhibited Akt/mTOR/NF-κB pathway in oral cancer cells. Interestingly, tobacco carcinogen NNN and synthetic carcinogen 4-NQO, enhanced the expression of Orai-1 and Orai-2 in SAS cells. Therefore, we conclude that Orai-1 and Orai-2 have significant role in oral cancer and can be further explored to develop novel therapies for the treatment of this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call