Abstract

We derive new theoretical results on the properties of the adaptive least absolute shrinkage and selection operator (adaptive lasso) for possibly nonlinear time series models. In particular, we investigate the question of how to conduct inference on the parameters given an adaptive lasso model. Central to this study is the test of the hypothesis that a given adaptive lasso parameter equals zero, which therefore tests for a false positive. To this end, we introduce a recentered bootstrap procedure and show, theoretically and empirically through extensive Monte Carlo simulations, that the adaptive lasso can combine efficient parameter estimation, variable selection, and inference in one step. Moreover, we analytically derive a bias correction factor that is able to significantly improve the empirical coverage of the test on the active variables. Finally, we apply the adaptive lasso and the recentered bootstrap procedure to investigate the relation between the short rate dynamics and the economy, thereby providing a statistical foundation (from a model choice perspective) for the classic Taylor rule monetary policy model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.