Abstract

Side-chain modeling is critical for protein structure prediction since the uniqueness of the protein structure is largely determined by its side-chain packing conformation. In this paper, differing from most approaches that rely on rotamer library sampling, we first propose a novel side-chain rotamer prediction method based on deep neural networks, named OPUS-RotaNN. Then, on the basis of our previous work OPUS-Rota2, we propose an open-source side-chain modeling framework, OPUS-Rota3, which integrates the results of different methods into its rotamer library as the sampling candidates. By including OPUS-RotaNN into OPUS-Rota3, we conduct our experiments on three native backbone test sets and one non-native backbone test set. On the native backbone test set, CAMEO-Hard61 for example, OPUS-Rota3 successfully predicts 51.14% of all side-chain dihedral angles with a tolerance criterion of 20° and outperforms OSCAR-star (50.87%), SCWRL4 (50.40%), and FASPR (49.85%). On the non-native backbone test set DB379-ITASSER, the accuracy of OPUS-Rota3 is 52.49%, better than OSCAR-star (48.95%), FASPR (48.69%), and SCWRL4 (48.29%). All the source codes including the training codes and the data we used are available at https://github.com/thuxugang/opus_rota3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.