Abstract

Side-chain modeling plays a critical role in protein structure prediction. However, in many current methods, balancing the speed and accuracy is still challenging. In this paper, on the basis of our previous work OPUS-Rota (Protein Sci. 2008, 17, 1576-1585), we introduce a new side-chain modeling method, OPUS-Rota2, which is tested on both a 65-protein test set (DB65) in the OPUS-Rota paper and a 379-protein test set (DB379) in the SCWRL4 paper. If the main chain is native, OPUS-Rota2 is more accurate than OPUS-Rota, SCWRL4, and OSCAR-star but slightly less accurate than OSCAR-o. Also, if the main chain is non-native, OPUS-Rota2 is more accurate than any other method. Moreover, OPUS-Rota2 is significantly faster than any other method, in particular, 2 orders of magnitude faster than OSCAR-o. Thus, the combination of higher accuracy and speed of OPUS-Rota2 in modeling side chains on both the native and non-native main chains makes OPUS-Rota2 a very useful tool in protein structure modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.