Abstract
The ultimate goal of metabolic engineering is to produce desired compounds on an industrial scale in a cost effective manner. To address challenges in metabolic engineering, computational strain optimization algorithms based on genome-scale metabolic models have increasingly been used to aid in overproducing products of interest. However, most of these strain optimization algorithms utilize a metabolic network alone, with few approaches providing strategies that also include transcriptional regulation. Moreover previous integrated approaches generally require a pre-existing regulatory network. In this study, we developed a novel strain design algorithm, named OptRAM (Optimization of Regulatory And Metabolic Networks), which can identify combinatorial optimization strategies including overexpression, knockdown or knockout of both metabolic genes and transcription factors. OptRAM is based on our previous IDREAM integrated network framework, which makes it able to deduce a regulatory network from data. OptRAM uses simulated annealing with a novel objective function, which can ensure a favorable coupling between desired chemical and cell growth. The other advance we propose is a systematic evaluation metric of multiple solutions, by considering the essential genes, flux variation, and engineering manipulation cost. We applied OptRAM to generate strain designs for succinate, 2,3-butanediol, and ethanol overproduction in yeast, which predicted high minimum predicted target production rate compared with other methods and previous literature values. Moreover, most of the genes and TFs proposed to be altered by OptRAM in these scenarios have been validated by modification of the exact genes or the target genes regulated by the TFs, for overproduction of these desired compounds by in vivo experiments cataloged in the LASER database. Particularly, we successfully validated the predicted strain optimization strategy for ethanol production by fermentation experiment. In conclusion, OptRAM can provide a useful approach that leverages an integrated transcriptional regulatory network and metabolic network to guide metabolic engineering applications.
Highlights
Microbial-based cell factories can be used to advance environmentally friendly and economically viable industrial bioprocesses
Computational strain design algorithms based on genome-scale metabolic models have increasingly been used to guide rational strain design for metabolic engineering
We developed a novel strain design algorithm, named OptRAM (Optimization of Regulatory And Metabolic Network), which can identify combinatorial optimization strategies including overexpression, knockdown or knockout of both transcription factors and metabolic genes, based on our previous Integrated Deduced REgulation And Metabolism (IDREAM) integrated network framework
Summary
Microbial-based cell factories can be used to advance environmentally friendly and economically viable industrial bioprocesses. Various strategies have been suggested to modify industrial strains to improve desired product yields. Rational strain design methods suggest particular genes or enzymes to alter in order to achieve desired strain characteristics for metabolic engineering [4]. Next-Generation Sequencing (NGS) [5] and semi-automatic annotation techniques [6] have produced an increasing number of well annotated microbial genomes, enabling the collection of reasonably comprehensive information about which metabolic enzymes are encoded. This information has greatly contributed to the reconstruction of the genome-scale metabolic models of various organisms [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.