Abstract

Functional and reversible plasmonic resonances across the visible and near-infrared spectrum have opened new avenues for developing advanced next-generation nanophotonic devices. In this study, by using optothermally controlled phase-change material (PCM) for plasmonic nanostructures, we successfully induced highly tunable charge transfer plasmon (CTP) resonance modes. To this end, we have chosen a two-member dimer assembly consisting of gold cores and Ge2Sb2Te5 (GST) shells in distant, touching, and overlapping regimes. We show that switching between amorphous (dielectric) and crystalline (conductive) phases of GST allows for achieving tunable dipolar and CTP resonances and enables an effective interplay between these modes along the near-infrared spectrum. By analyzing electromagnetically calculated spectral responses for the dimer antenna in tunneling and direct charge transfer regimes, we confirmed that the induced CTPs in touching and overlapping regimes are highly controllable and pronounced in comparison to the quantum tunneling regime. We also use the precise, fast, and controllable switching between dipolar and CTP resonant modes to develop a telecommunication switch based on a simple metallodielectric dimer. The proposed structures can help designing optothermally controlled devices without morphological variations in the geometry of the design, and having strong potential for advanced plasmon modulation and fast data routing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.