Abstract

Presented in this paper are measurements of an optomechanical device in which various acoustic modes of a sample of superfluid helium couple to a fiber-based optical cavity. In contrast with recent work on the paraxial acoustic mode confined by the cavity mirrors (Kashkanova et al Nat. Phys. 2016 ()), we focus specifically on the acoustic modes associated with the helium surrounding the cavity. This paper provides a framework for understanding how the acoustic modes depend on device geometry. The acoustic modes are observed using the technique of optomechanically induced transparency/amplification. The optomechanical coupling to these modes is found to be predominantly photothermal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.