Abstract
High-gain and low-noise signal amplification is a valuable tool in various cryogenic microwave experiments. A microwave optomechanical device, in which a vibrating capacitor modulates the frequency of a microwave cavity, is one technique that is able to amplify microwave signals with high gain and large dynamical range. Such optomechanical amplifiers typically rely on strong backaction of microwave photons on the mechanical mode achieved in the sideband-resolved limit of optomechanics. Here, we observe microwave amplification in an optomechanical cavity in the extremely unresolved sideband limit. A large gain is observed for any detuning of the single pump tone within the cavity linewidth, a clear indication that the amplification is not induced by dynamical backaction. By being able to amplify for any detuning of the pump signal, the amplification center frequency can be tuned over the entire range of the broad cavity linewidth. Additionally, by providing microwave amplification without mechanical amplification, we predict that using this scheme it is possible to achieve near-quantum-limited microwave amplification despite a large thermal occupation of the mechanical mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.