Abstract
We propose a scheme in which the cooling of a mechanical resonator is achieved by exposing the optomechanical system to a non-Markovian environment. Because of the backflow from the non-Markovian environment, the phonon number can go beyond the conventional cooling limit in a Markovian environment. Utilizing the spectrum density obtained in the recent experiment [Nature Communications 6, 7606 (2015)], we show that the cooling process is highly effective in a non-Markovian environment. The analysis of the cooling mechanism in a non-Markovian environment reveals that the non-Markovian memory effect is instrumental to the cooling process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.