Abstract
Urothelial cells, which play an essential role in barrier function, are also thought to play a sensory role in bladder physiology by releasing signaling molecules in response to sensory stimuli that act upon adjacent sensory neurons. However, it is challenging to study this communication due to the overlap in receptor expression and proximity of urothelial cells to sensory neurons. To overcome this challenge, we developed a mouse model where we can directly stimulate urothelial cells using optogenetics. We crossed a uroplakin II (UPK2) cre mouse with a mouse that expresses the light-activated cation channel channelrhodopsin-2 (ChR2) in the presence of cre expression. Optogenetic stimulation of urothelial cells cultured from UPK2-ChR2 mice initiates cellular depolarization and release of ATP. Cystometry recordings demonstrated that optical stimulation of urothelial cells increases bladder pressure and pelvic nerve activity. Increases in bladder pressure persisted, albeit to a lesser extent, when the bladder was excised in an in vitro preparation. The P2X receptor antagonist PPADS significantly reduced optically evoked bladder contractions in vivo and ex vivo. Furthermore, corresponding nerve activity was also inhibited with PPADS. Our data suggest that urothelial cells can initiate robust bladder contractions via sensory nerve signaling or contractions through local signaling mechanisms. These data support a foundation of literature demonstrating communication between sensory neurons and urothelial cells. Importantly, with further use of these optogenetic tools, we hope to scrutinize this signaling mechanism, its importance for normal micturition and nociception, and how it may be altered in pathophysiological conditions.NEW & NOTEWORTHY Urothelial cells play a sensory role in bladder function. However, it has been particularly challenging to study this communication as both sensory neurons and urothelial cells express similar sensory receptors. Here we demonstrate using an optogenetic technique, that specific urothelial stimulation alone resulted in bladder contractions. This approach will have a long-lasting impact on how we study urothelial-to-sensory neuron communication and the changes that occur under disease conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.