Abstract

Inhibitory neurons make up a significant fraction of the neurons within the preBötzinger Complex (preBötC), a site critical for mammalian eupneic breathing. The role of glycinergic preBötC neurons in respiratory rhythmogenesis in mice was investigated by optogenetically-targeted excitation or inhibition. Channelrhodopsin-2 (ChR2) or Archaerhodopsin (Arch) was expressed in glycinergic preBötC neurons of glycine transporter 2 (GlyT2)-Cre mice. In ChR2-transfected mice, brief inspiratory-phase bilateral photostimulation targeting the preBötC prematurely terminated inspiration, whereas expiratory-phase photostimulation delayed the onset of the next inspiration. Prolonged photostimulation produced apneas lasting as long as the light pulse. Inspiratory-phase photoinhibition in Arch-transfected mice during inspiration increased tidal volume without altering inspiratory duration, whereas expiratory-phase photoinhibition shortened the latency until the next inspiration. During persistent apneas, prolonged photoinhibition restored rhythmic breathing. We conclude that glycinergic preBötC neurons modulate inspiratory pattern and are important for reflex apneas but that the rhythm can persist after significant dampening of their activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.