Abstract
AbstractGenetically encoded, light‐activatable proteins provide the means to probe biochemical pathways at specific subcellular locations with exquisite temporal control. However, engineering these systems in order to provide a dramatic jump in localized activity, while retaining a low dark‐state background remains a significant challenge. When placed within the framework of a genetically encodable, light‐activatable heterodimerizer system, the actin‐remodelling protein cofilin induces dramatic changes in the F‐actin network and consequent cell motility upon illumination. We demonstrate that the use of a partially impaired mutant of cofilin is critical for maintaining low background activity in the dark. We also show that light‐directed recruitment of the reduced activity cofilin mutants to the cytoskeleton is sufficient to induce F‐actin remodeling, formation of filopodia, and directed cell motility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.