Abstract

The myocardin-related transcription factor A (MRTF-A) controls the transcriptional activity of the serum response factor (SRF) in a tightly controlled actin-dependent manner. In turn, MRTF-A is crucial for many actin-dependent processes including adhesion, migration, and contractility and has emerged as a novel target for anti-tumor strategies. MRTF-A rapidly shuttles between cytoplasmic and nuclear compartment via dynamic actin interactions within its N-terminal RPEL domain. Here, optogenetics is used to spatiotemporally control MRTF-A nuclear localization by blue light using the light-oxygen-voltage-sensing domain 2-domain based system LEXY (light-inducible nuclear export system). It is found that light-regulated nuclear export of MRTF-A occurs within 10-20 min. Importantly, MRTF-A-LEXY shuttling is independent of perturbations of actin dynamics. Furthermore, light-regulation of MRTF-A-LEXY is reversible and repeatable for several cycles of illumination and its subcellular localization correlates with SRF transcriptional activity. As a consequence, optogenetic control of MRTF-A subcellular localization determines subsequent cytoskeletal dynamics such as non-apoptotic plasma membrane blebbing as well as invasive tumor-cell migration through 3D collagen matrix. This data demonstrates robust optogenetic regulation of MRTF as a powerful tool to control SRF-dependent transcription as well as cell motile behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.