Abstract
An optofluidic tunable mode-locked fiber laser using a microfluidic chip integrated with long-period grating (LPG) is presented. The microfluidic chip enables ultrafine adjustment of the liquid's refractive index and, thus, LPG's spectrum via tuning the mixing ratio of the microfluidic flows. With such an optofluidic spectrum-tunable filter, the central wavelength of the mode-locked laser can be tuned continuously, while the mode-locking state is steadily maintained. The mode-locked pulses are measured with a pulse duration of 0.9 ps and repetition rate of 12.14 MHz, respectively. Moreover, bound solitons with variable soliton separations are experimentally demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.