Abstract

Optical amplification was observed in electro-optic (EO) ceramic plates of neodymium doped lanthanum-modified lead zirconate titanate (Nd3+:PLZT), when the pumping and seeding beams are not overlapped temporarily. This striking feature in the gain measurement and the accompanying slowly trailing-off both seen in the optical amplification as well as in the lasing action are satisfactorily explained by electron releasing from the rich vacancy-based carrier traps in the intrinsically disordered ceramics, i.e., the consecutively optical, thermal stimuli are found responsible for the long persistent optoenergy storage, and consequently the slow response of the gain dynamics. These findings in optical amplification, the slowly trailing-off, and the underlying mechanism have opened a new way of developing novel controllable optical devices. The model thus established could serve as a guide in design and refinement of a new generation of products out of this excellent, well commercialized EO PLZT ceramics family and similar others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call