Abstract

In densely populated cities or indoor environments, limited accessibility to satellites and severe multipath effects significantly decrease the accuracy and reliability of satellite-based positioning systems. To meet the needs of “seamless navigation” in these challenging environments, an advanced terrestrial positioning system is under development. A new principle of mobile robot navigation capable of working in a complex unknown landscape (another planet or just on a cross-country terrain) is proposed. The optoelectrical method proposed has a good spatial domain resolution and immunity to multipath, as well as new optical means for “technical vision” realization. Two related problems are solved: creation of a technical vision system for recognition of images of an unfamiliar landscape and determination of the direction to the initial point of the movement trajectory of the mobile transport robot. Issues of principle design and also of functioning and interaction of system units and elements are described. A mathematical apparatus for processing digital information inside the system and for determining the distances and angle measurements in the system proposed is developed. Some important parameters are analytically determined: expected accuracy, functioning speed, range of action, power issues, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call