Abstract

The present work demonstrates that vertically aligned graphene (VG)/diamond heterojunctions can function as optoelectronically-controllable synapses, which are connection parts of neurons and key elements for the memory functions of human brain. These junctions mimic several of the fundamental characteristics of biological synapses, including producing an excitatory postsynaptic current (EPSC), exhibiting a transition from short-term memory (STM) to long-term memory (LTM) states, and paired pulse facilitation (PPF), all of which are optically controllable. These junctions also exhibit photo-sensing properties and photo-controllable synaptic plasticity, meaning that they have similar functions as occur in the human brain and retina. Arrays fabricated from these junctions were found to function as image sensors that could provide an optical memory function and selectively memorize information depending on the relative importance of the data. These results are expected to assist in the realization of neuromorphic optical computers simulating human visual memory systems that are modulated by specific interests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.