Abstract

Integrating nanoscale optoelectronic functions is vital for applications such as optical emitters, detectors, and quantum information. Lanthanide atoms show great potential in this endeavor due to their intrinsic transitions. Here, we investigate Er adatoms on Si(100)-2×1 at 9 K using a scanning tunneling microscope (STM) coupled to a tunable laser. Er adatoms display two main adsorption configurations that are optically excited between 800 and 1200 nm while the STM reads the resulting photocurrents. Our spectroscopic method reveals that various photocurrent signals stem from the bare silicon surface or Er adatoms. Additional photocurrent peaks appear as the signature of the Er adatom relaxation, triggering efficient dissociation of nearby trapped excitons. Calculations using density functional theory with spin-orbit coupling correction highlight the origin of the observed photocurrent peaks as specific 4f→4f or 4f→5d transitions. This spectroscopic technique can facilitate optoelectronic analysis of atomic and molecular assemblies by offering insight into their intrinsic quantum properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.