Abstract
In this paper, we have investigated optoelectronic properties of two-dimensional GaN adsorbed with non-metal atoms: H, N and O based on first-principle. We find that adsorption of H, N and O atom on 2D GaN is achieved by chemisorption, and the most stable adsorption site is at the top of N atom. Band structure of 2D GaN after adsorbing H atom moves to low energy region and two-dimensional GaN is transformed into an n-type semiconductor. After adsorption of N atom, a new impurity energy appears at the Fermi level, and N adatom could induce magnetism into 2D GaN. Static dielectric constants of 2D GaN increase and adsorption spectrums have extend to infrared band when adsorbing H and N. Strong reflection peaks and strong adsorption peaks after adsorption are located at deep ultraviolet range, which is beneficial for optoelectronic application in the deep ultraviolet. Specifically, two-dimensional GaN adsorbed with H atom is more conducive to manufacture of nano-optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.