Abstract

Cu 2O and two types of Cu 2O–Ag–Cu 2O (CAC) multilayered thin films were deposited on glass substrates using DC-magnetron sputtering. For CAC films, the mass thickness of Ag layer was controlled at 3 nm. After deposition, some of these films were annealed using a rapid thermal annealing (RTA) system at 650 °C, in order to create embedded Ag particles. AC films were used to study the clustering effect of Ag in Ar atmosphere, as well as for forming the 2nd type of CAC film by covering another Cu 2O layer on the annealed AC structure. A UV–VIS–NIR photometer, a Hall measurement system, and a I–V measurement system were used to characterize the optical and electrical properties of these films with and without RTA. The results show that 2-dimensional Ag layer can transform into many individual particles due to its high surface tension at annealing temperature, no matter when the annealing was carried out. For CAC films, without annealing, the optical transmission and the resistivity are decreased with the inserted Ag layer. After annealing, both the transmission and resistivity are increased, possibly due to the clustering effect of Ag layer. Most importantly, it is found that the embedded Ag particles can increase the light absorption in the NIR–IR region, which can increase photo-induced current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.