Abstract

Bandgap engineering of semiconductor nanomaterials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, the growth of single-crystalline quaternary alloyed Ga0.75In0.25As0.49Sb0.51 nanowires via a chemical-vapor-deposition method. The synthesized nanowires have a uniform composition distribution along the growth direction, with a zinc-blende structure. In the photoluminescence investigation, these quaternary alloyed semiconductor nanowires show a strong band edge light emission at 1950 nm (0.636 eV). Photodetectors based on these alloy nanowires show a strong light response in the near-infrared region (980 nm) with the external quantum efficiency of 2.0 × 104% and the responsivity of 158 A/W. These novel near-infrared photodetectors may find promising applications in integrated infrared photodetection, information communication, and processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call