Abstract
The physical properties of alkaline-earth zirconates AZrO3 (A = Ca, Ba, Sr) are revealed using density functional theory (DFT) based FP-LAPW+lo approach. The present study investigates the structural, optoelectronic, and thermoelectric features, which are elucidated using GGA-PBEsol functional. The changing A cations from Ba to Sr to Ca result in increasing lattice constant comparable with experimental data and reducing bulk modulus. The CaZrO3 exhibits comparatively higher stiffness or hardness than that of the SrZrO3 and BaZrO3. The applied pressure improves mechanical stability by increasing ductility. Moreover, electronic structures are computed under varying pressures 0–30 GPa. All three compounds show indirect bandgap (Γ–M) up to 20 GPa, and the transition to direct bandgap (Γ–Γ) is illustrated at 30 GPa. Consequently, the significance of optoelectronic applications is revealed. The pressure-dependent various optical parameters are also explored and validation of Penn’s model, transparency, and maximum reflectivity at specific energy ranges expose their possible commercial candidature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.