Abstract

We review our recently combined study of temperature-dependent photoluminescence, absorption, and photocurrent measurements with theoretical models on PbSrSe thin films grown by molecular beam epitaxy for the key properties of PbSrSe thin films and their microstructures. The derived empirical equations for band gaps, effective masses, and refractive indices have been employed successfully in PbSrSe/PbSe multiple quantum well (MQW) mid-infrared laser systems, which opens the way for the design of IV-VI MQW mid-infrared lasers. The infrared detection of PbSrSe thin films has also been demonstrated at different temperatures, where the spectral intensity and wavelength coverage are determined by the band gap and the film thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.