Abstract

We present a novel, versatile optoelectronic neural network architecture for implementing supervised learning algorithms in photorefractive materials. The system is based on spatial multiplexing rather than the more commonly used angular multiplexing of the interconnect gratings. This simple, single-crystal architecture implements a variety of multilayer supervised learning algorithms including mean field theory, back-propagation, and Marr-Albus-Kanerva style algorithms. Extensive simulations show how beam depletion, rescattering, absorption, and decay effects of the crystal are compensated for by suitably modified supervised learning algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.