Abstract

Recent technological trends based on miniaturization of mechanical, electromechanical, and photonic devices have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS requires the synergism of advanced design, analysis, and fabrication methodologies, with quantitative metrology techniques for characterization of their performance, reliability, and integrity. We describe optoelectronic techniques for measuring, with submicrometer accuracy, shape and changes in states of deformation of MEMS accelerometers used in transportation applications. Using the display and data modes of the described optoelectronic techniques, it is possible to characterize MEMS. This characterization is performed during static and dynamic modes of operation of MEMS. To assure high accuracy of measurements, overlapping regions, i.e., tiles, of MEMS are analyzed and the data (tiles) are patched together to represent the entire component. Preliminary results indicate that the MEMS accelerometer considered in this study deforms 1.48 μm, under the loading conditions used, which represents nearly 50% of its functional dimension in the direction of deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.