Abstract

Abstract Eu2Si5N8 is considered the most important compound in the development of inorganic materials with high potential and performance. Therefore, the electronic, magnetic and optical properties of Eu2Si5N8 are investigated here using density functional theory. The electronic interactions are described within the generalised gradient approximation, GGA+U (where U is the Hubbard Coulomb energy term). The calculated energy gap was 3.5 eV for the investigated compound, resulting in a direct band gap semiconductor. The optical constants, including the dielectric function, refractive index, absorption coefficient, reflectivity, and energy loss function were calculated for radiation up to 14 eV. The optical properties demonstrate that the main differences in absorption, reflectivity, energy-loss function and refractive index occur in the infrared and visible regions for the spin-up and spin-down states, which makes this material an excellent candidate for optical memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.