Abstract

Limitations in current imaging tools have long challenged the imaging of small pancreatic islets in animal models. Here, we report the first development and invivo validation testing of a broad-spectrum and high-absorbance near-infrared optoacoustic contrast agent, E4x12-Cy7. Our near-infrared tracer is based on the amino acid sequence of exendin-4 and targets the glucagon-like peptide-1 receptor (GLP-1R). Cell assays confirmed that E4x12-Cy7 has a high-binding affinity (dissociation constant, Kd, 4.6 ± 0.8 nM). Using the multispectral optoacoustic tomography, we imaged E4x12-Cy7 and optoacoustically visualized β-cell insulinoma xenografts invivo for the first time. In the future, similar optoacoustic tracers that are specific for β-cells and combines optoacoustic and fluorescence imaging modalities could prove to be important tools for monitoring the pancreas for the progression of diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call