Abstract

We have designed and developed lab-on-fibre seismic sensors containing a micro-opto-mechanical cavity on the fibre tip. The mechanical cavity is designed as a double cantilever suspended on the fibre end facet and connected to a proof mass to tune its response. Ground acceleration leads to displacement of the cavity length, which in turn can be remotely detected using an interferometric interrogation technique. After the sensors characterization, an experimental validation was conducted at the Italian National Institute of Geophysics and Volcanology (INGV), which is responsible for seismic surveillance over the Italian country. The fabricated sensors have been continuously used for long periods to demonstrate their effectiveness as seismic accelerometer sensors. During the tests, fibre optic seismic accelerometers clearly detected the seismic sequence that culminated in the severe Mw6.5 Norcia earthquake that struck central Italy on October 30, 2016. The seismic data provided by the optical sensors were analysed by specialists at the INGV. The wave traces were compared with state-of-the-art traditional sensors typically incorporated into the INGV seismic networks. The comparison verifies the high fidelity of the optical sensors in seismic wave detection, indicating their suitability for a novel class of seismic sensors to be employed in practical scenarios.

Highlights

  • IntroductionStrong earthquakes frequently strike central Italy (the Abruzzo region on April 2009, the Emilia-Romagna on May 20, 2012, and the Umbria, Lazio and Marche on Aug. 24, 2016) and have killed hundreds recently and injured many more

  • The dynamic response of the LOF sensor was retrieved and compared to an integrated circuit piezoelectric (ICP) accelerometer in the presence of an impulse vibration induced by a hammer blow

  • The sensor is composed of a micro-opto-mechanical cavity on the fibre tip, forming an extrinsic Fabry-Pérot cavity with the fibre end facet

Read more

Summary

Introduction

Strong earthquakes frequently strike central Italy (the Abruzzo region on April 2009, the Emilia-Romagna on May 20, 2012, and the Umbria, Lazio and Marche on Aug. 24, 2016) and have killed hundreds recently and injured many more. During one of these seismic sequences, a 6.5-magnitude quake struck Norcia on October 30, 2016. The implemented monitoring techniques are currently based primarily on seismometers, geophones, and accelerometers These sensor typologies are complementary (and partially overlap) in terms of bandwidth and dynamic range, and when operated in conjunction, they supply detailed information on seismic events. The remote operability and multipoint sensing ability of OF sensors make them well suited for monitoring large areas and hostile environments, as the interrogation unit can be installed in a suitable and safe location[8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call