Abstract

Intra-canal fracture of rotary NiTi instruments occurs due to torsional stress, cyclic fatigue, or a combination of these two factors. Broken instruments are a serious obstacle to shaping, cleaning, and filling of the root canal and can adversely affect the outcome of endodontic therapy.The aim of this study was to examine the magnetic properties and ultrastructural changes of new, used, and fractured NiTi instruments using opto-magnetic imaging spectroscopy (OMIS). The study included three sets of different types of rotary instruments: MTwo (VDW, Munich, Germany), Pro Taper Universal (Dentsply Maillefer, Ballaigues, Switzerland), and BioRace (FKG DENTAIRE Swiss Dental Products, Le Crêt-du-Locle Switzerland). Root canal shaping was performed on root canals with different curvatures, and after intra-canal fracture, instruments of the same type (new, used, and fractured) were analyzed using OMIS at the Faculty of Mechanical Engineering, University of Belgrade.The obtained results showed a coincidence of peak localization for the used instruments that did not suffer a fracture, as well as for new, unused instruments of all examined groups. Additionally, there was a coincidence of peak intensities for new and fractured instruments in all groups. The specific treatment of electropolishing of the active surface of BioRace instruments caused a completely different electromagnetic response compared to conventional NiTi sets of tested instruments. New, unused BioRace instruments had the most pronounced positive (5.6078 n.a.u. x1000) and negative (−8.5218 n.a.u. x1000) intensity values.The analysis of NiTi instruments using opto-magnetic imaging spectroscopy indicated changes in the magnetic properties after their instrumentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.