Abstract

Polycrystalline Boron-doped ZnO films deposited by low pressure chemical vapor deposition technique are developed for their use as transparent contacts for thin-film silicon solar cells. The size of the columnar grains that constitute the ZnO films is related to their light scattering capability, which has a direct influence on the current generation in thin-film silicon solar cells. Furthermore, if the doping level of the ZnO films is kept below 1 × 10 20 cm − 3 , the electron mobility can be drastically enhanced by growing large grains, and the free carrier absorption is reduced. All these considerations have been taken in account to develop ZnO films finely optimized for the fabrication of microcrystalline thin-film silicon solar cells. These TCO allow the achievement of solar cell conversion efficiencies close to 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.