Abstract
Deregulation and growth in the power industry are causing dramatic changes in power production and distribution. The demand for peak power and potentially high revenues due to premium electricity rates has attracted independent developers to the concept of Merchant Power Plants (MPPs). Over 100,000 MW of greenfield capacity is currently being developed through approximately 200 merchant plants in North America. These MPPs will have no captive customers or long-term power purchase agreements, but will rely on selling electricity into a volatile electricity spot market. Because of this, MPPs need the capability to export as much power as possible on demand. MPPs must also have the capability to produce significant assets in order to compete in the marketplace, based on both technical and commercial operation factors such as value engineering, life-cycle cost management, and information technology. It is no surprise then, that almost all merchant project developers have specified combined cycle (CC) technology. The CC power plant offers the highest thermal efficiency of all electric generating systems commercially available today. It also exhibits low capital costs, low emissions, fuel and operating flexibility, low operation and maintenance costs, short installation schedule, and high reliability/availability. However, since gas turbines (GTs) are the basis for CC power plants, these plants experience power output reductions in the range of 10 to 15 percent during summer months, the period most associated with peak power demand. In order to regain this loss of output as well as to provide additional power to meet peak demands, the most common options are GT inlet fogging, GT steam injection, and heat recovery steam generator (HRSG) supplemental firing. This paper focuses on plant design, cycle performance, and the economics of plant configuration associated with these options. Guidelines are presented in this paper to assist the owner in selecting power enhancement options for the MPP that will maximize their Return on Equity (ROE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.