Abstract
An efficient algorithm is developed to price European options in the presence of proportional transaction costs, using the optimal portfolio framework of Davis (in: Dempster, M.A.H., Pliska, S.R. (Eds.), Mathematics of Derivative Securities. Cambridge University Press, Cambridge, UK). A fair option price is determined by requiring that an infinitesimal diversion of funds into the purchase or sale of options has a neutral effect on achievable utility. This results in a general option pricing formula, in which option prices are computed from the solution of the investor's basic portfolio selection problem, without the need to solve a more complex optimisation problem involving the insertion of the option payoff into the terminal value function. Option prices are computed numerically using a Markov chain approximation to the continuous time singular stochastic optimal control problem, for the case of exponential utility. Comparisons with approximately replicating strategies are made. The method results in a uniquely specified option price for every initial holding of stock, and the price lies within bounds which are tight even as transaction costs become large. A general definition of an option hedging strategy for a utility maximising investor is developed. This involves calculating the perturbation to the optimal portfolio strategy when an option trade is executed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.