Abstract
We consider the pricing of European options under a modified Black–Scholes equation having fractional derivatives in the “spatial” (price) variable. To be specific, the underlying price is assumed to follow a geometric Koponen–Boyarchenko–Levendorski process. This pure jump Lévy process could better capture the real behaviour of market data. Despite many difficulties caused by the “globalness” of the fractional derivatives, we derive an explicit closed-form analytical solution by solving the fractional partial differential equation analytically, using the Fourier transform technique. Based on the newly derived formula, we also examine, in theory, many basic properties of the option price under the current model. On the other hand, for practical purposes, we impose a reliable implementation method for the current formula so that it can be easily used in the trading market. With the numerical results, the impact of different parameters on the option price are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.